在公共卫生应用领域,紫外消毒技术的有效性和安全性必须得到保障。一方面,对于不同的细菌和病毒要满足足够的紫外辐照剂量和时间,否则不能灭活;另一方面,深紫外光不能直接照射裸露的皮肤、眼睛,如果使用不当反而会对人造成严重伤害。由于深紫外光肉眼完全不可见,对其使用的有效性和安全性必须严加管控。因此,理论上讲,紫外净化设备必须加装紫外传感器,对紫外光的强度和辐照剂量进行实时测量,确保消毒灭菌过程的彻底和可靠,否则就会给用户带来很大的卫生隐患。紫外探测器可以用于测量太阳耀斑和其他天体现象。应用UV传感器平台
紫外传感器在工业和生产中应用包括:可以在太阳能电池板的监测和调节中起到重要作用,帮助提高太阳能电池板的效率,并延长其使用寿命;可以用于检测紫外线辐照对材料的影响,从而预测其寿命和性能;可以帮助人们选择适当的防晒霜;可以配合其他传感器一起使用,如温度传感器、湿度传感器等,以获得更**的环境数据;在农业领域中用于监测植物在不同紫外线条件下的生长情况;结合其它的传感器如温湿度传感器、二氧化碳传感器等的数据来实现某些特殊的应用......现代化UV传感器工程技术紫外探测器广泛应用于医疗、环保、光学等领域。
紫外线是一种电磁波,波长小于可见光,大部分地球表面的紫外线来自太阳,紫外线是伤害性光线的一种,经由皮肤的吸收,会伤害DNA,当DNA遭受破坏、细胞会因而死亡或是发展成不能控制的细胞,这就是瘤形成的初期。紫外线已被确定与许多疾病的产生有关;例如:皱纹、晒伤、白内障、皮肤病、视觉损害与免疫系统的伤害。当紫外线照射人体或生物体后,发生生理变化。不同波长的紫外线的生理作用不同。根据紫外线对生物作用,在医疗上把紫外线划分为不同的波段:黑斑紫外线(UVA)在320—400纳米波段;红斑紫外线或保健射线(UVB)在280~320纳米波段;灭菌紫外线(UVC)在200~280纳米波段;致臭氧紫外线在180~200纳米波段
该法利用臭氧对254nm波长的紫外线特征吸收的特性,依据朗伯一比尔定律测量紫外线,通过臭氧的光强变化来检测臭氧浓度。该法不但适用于检测气体中臭氧浓度,也可以检测水中溶存的臭氧浓度。该原理已被美国等国家作为臭氧标准分析方法。该公司采用镓敏团队紫外传感器制作的臭氧检测仪,采用紫外线吸收法的原理,用稳定的紫外灯光源产生紫外线,用光波过滤器过滤掉其它波长紫外光,只允许波长253.7nm通过。经过样品光电传感器,再经过臭氧吸收池后,到达采样光电传感器。通过样品光电传感器和采样光电传感器电信号比较,再经过数学模型的计算,得出臭氧浓度大小。紫外探测器可以用于环境监测和保护。
采用镓敏团队紫外传感器设计成紫外荧光水质传感器,通过紫外荧光来测试微生物菌落,从而测试水质的情况。在生物细菌细胞中存在一种二核苷酸,对细胞生长增殖、信号传递、基因调控、线粒体保护等方面起着重要的作用。该二核苷酸是种强荧光物质,单位菌体胞内含量恒定,细菌菌数与该二核苷酸量呈正相关关系,故细菌菌数与荧光强度呈良好的线性相关。由此通过利用荧光强度可以测出微生物细菌总数的情况。欢迎咨询镓敏光电可靠性紫外传感器紫外探测器的响应时间一般在微秒至毫秒之间。常见UV传感器代加工
紫外探测器可以用于研究材料科学中的表面现象。应用UV传感器平台
在多种消毒技术中,利用深紫外光照射来消毒灭菌是***的方法之一,具有无色、无味和无化学残留等诸多优点。紫外线消毒原理是利用280nm以下的UVC波段高能深紫外光子直接破坏微生物(细菌、病毒和病原体)的DNA或RNA遗传物质,通过阻断其繁殖来实现高效快速的广谱灭菌效果。相比之下,其他波段的紫外光,如280nm以上的UVA和UVB波段,则**多只能起到抑菌效果,不具备杀灭细菌和病毒的能力。紫外光消毒实际是一项已经使用多年的技术,目前在医院和餐饮领域得到了***采用,但随着公共场所消毒需求的大幅度增加,该技术的发展也面临新的挑战:传统的紫外消毒光源是以紫外汞灯为主,技术相对成熟,但紫外汞灯普遍存在体积大、功耗高和寿命短(千小时量级)的缺点,对人体皮肤有一定的伤害性,使用紫外传感器可有效安全的使用紫外汞灯。欢迎咨询镓敏光电紫外传感器产品应用UV传感器平台